Structure Refinement of Mathiasite, $\left(\mathrm{K}_{0.62} \mathrm{Na}_{0.14} \mathrm{Ba}_{0.14} \mathrm{Sr}_{0.10}\right)_{\sum 1.0}\left[\mathrm{Ti}_{12.90} \mathrm{Cr}_{3.10} \mathrm{Mg}_{1.53} \mathrm{Fe}_{2.15} \mathrm{Zr}_{0.67} \mathrm{Ca}_{0.29}{ }^{-}\right.$ $\left.(\mathbf{V}, \mathrm{Nb}, \mathrm{Al})_{0.36}\right]_{\sum 21.0} \mathrm{O}_{38}$
By Bryan M. Gatehouse
Department of Chemistry, Monash University, Clayton, Victoria, Australia 3168
Ian E. Grey
CSIRO Division of Mineral Chemistry, PO Box 124, Port Melbourne, Victoria, A ustralia 3207
and Joseph R. Smyth
Geological Research Group, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545, USA

(Received 24 September 1982; accepted 15 December 1982)

Abstract

M_{r}=1693.08\), rhombohedral, $R \overline{3}, a=$ 9.119 (3) $\AA, \alpha=69.24$ (2) $)^{\circ}, Z=1, D_{x}=4.39 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \mu=68.8 \mathrm{~cm}^{-1}$. Final $R=$ 0.054 for 892 observed unique diffractometer data. Mathiasite is isostructural with the crichtonite-group minerals, $A M_{21} \mathrm{O}_{38}$, and is characterized by dominant potassium in the large-cation A site. Partial disorder in the M-cation sublattice is interpreted as due to the partial occupation of a second anion site by large cations.

Introduction. New rhombohedral $\mathrm{Ba}-\mathrm{Sr}-\mathrm{K}-\mathrm{Cr}-\mathrm{Fe}$ titanate minerals, related to the crichtonite-group minerals (Gatehouse, Grey, Campbell \& Kelly, 1978), have been recently identified in peridotite nodules from the Bultfontein kimberlite in South Africa (Smyth, Erlank \& Rickard, 1978). The compositions conform to the general formula $A M_{21} \mathrm{O}_{38}, A=$ large cations (occupying a 12 -coordinate anion site in crichtonite) and $M=$ small cations. Two new members, with $A=$ dominant Ba and K have been provisionally named lindsleyite and mathiasite respectively. In this paper we report the structure refinement for the K -dominant member, mathiasite.

Electron microprobe analyses (average of three points) gave Ti, $36 \cdot 7$; $\mathrm{Cr}, 9 \cdot 58$; $\mathrm{Fe}, 7 \cdot 17$; $\mathrm{Zr}, 3 \cdot 65$; Mg , $2 \cdot 21$; K, 1.44; Ba, 1.16; Ca, 0.69; Sr, 0.52; Nb, 0.55; $\mathrm{V}, 0.39$; Al, $0.18, \mathrm{Na}, 0.18 \mathrm{wt} \%$. The corresponding unit-cell composition, normalized to 38 oxygens, and with the $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ ratio adjusted to give 22 cations is: $\left(\mathrm{K}_{0 \cdot 62} \mathrm{Na}_{0 \cdot 14} \mathrm{Ba}_{0 \cdot 14} \mathrm{Sr}_{0 \cdot 10}\right)\left[\mathrm{Ti}_{12 \cdot 90} \mathrm{Cr}_{3 \cdot 10} \mathrm{Mg}_{1 \cdot 53} \mathrm{Fe}_{2} \cdot{ }_{15} \mathrm{Zr}_{0 \cdot 67}\right.$ $\mathrm{Ca}_{0 \cdot 29}\left(\mathrm{~V}, \mathrm{Nb}, \mathrm{Al}_{0} \cdot \cdot 36 \mathrm{O}_{38}\right.$ i.e. $A M_{21} \mathrm{O}_{38}$ with $A=$ large cations, K, Na, Ba, Sr.

Experimental. Crystal fragment measuring $0.044 \times$ 0108-2701/83/040421-02\$01.50
$0.069 \times 0.125 \mathrm{~mm}$ used for intensity data collection, PW1100 automated four-circle diffractometer, graphite-monochromated Mo $K \alpha, \omega-2 \theta$ scans, θ range $3-30^{\circ}$, scan speed $0.05^{\circ} \mathrm{s}^{-1}$, variable scan width $\Delta \theta=(1.20+0.3 \tan \theta)^{\circ}$; lattice parameters obtained from average of 15 orientation matrices from data collection; data corrected for absorption, maximum and minimum transmission factors 0.705 and $0.323 ; 5027$ $(\pm h, k, l)$ reflections collected and reduced to 1251 unique reflections, of which 892 with $I>3 \sigma(I)$ used in the refinement; atomic coordinates for loveringite (Gatehouse et al., 1978) in space group $R \overline{3}$ used as starting parameters, and the cations ordered into sites $M(0)-M(5)$ in order of decreasing size, as found for other crichtonite-group minerals; full-matrix leastsquares refinement of the scale factor, positional and isotropic thermal parameters converged at $R=0.06$.

The temperature factor for O (7) was almost zero and a difference Fourier map revealed a subsidiary peak at $0.37,0.37,0.37$, of height $3 \mathrm{e} \AA^{-3}$. Bond-length calculations confirmed that this corresponded to an octahedrally coordinated atom, $\overline{M-O}=2 \cdot 12 \AA$, which face-shared to the $M(2)$ tetrahedron on the trigonal axis. This site, $M(6)$, was allowed partial occupancy by Mg and a corresponding reduction in the site occupancy of $M(2)$ was introduced. The population parameters for $M(6)$ and $O(7)$ were refined and finally, a refinement of all coordinates and isotropic thermal parameters was carried out, resulting in convergence at $R=0.054, R_{w}=0.045\left[w=1 / \sigma^{2}(F)\right]$ for the observed reflections.

Scattering factors for neutral atoms were those of Cromer \& Mann (1968), anomalous-dispersion corrections for all atoms from Cromer \& Liberman (1970); SHELX 76 (Sheldrick, 1976) and XRAY 76 (Stewart, 1976) programs were used for all computing.
© 1983 International Union of Crystallography

Discussion. Final positional and isotropic temperature factors are given in Table 1.* Bond lengths associated with the different polyhedra are given in Table 2.

* Lists of structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38283 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Fractional coordinates and isotropic thermal parameters

	Occupancy	x	y	z	$B\left(\dot{\AA}^{2}\right)$
$M(0)$	$\begin{aligned} & 0.62 \mathrm{~K}+0.14 \mathrm{Na}+ \\ & 0.14 \mathrm{Ba}+0.10 \mathrm{Sr} \end{aligned}$	0	0	0	1.24 (6)
$M(1)$	$0.7 \mathrm{Zr}+0.3 \mathrm{Ca}$	$\frac{1}{4}$		$\frac{1}{2}$	0.26 (3)
$M(2)$	$0.9 \mathrm{Mg}+0.9 \mathrm{Fe}$	0.3111 (1)	0.3111 (1)	0.3111 (1)	0.36 (5)
$M(3)$	$\begin{aligned} & 0.9 \mathrm{Ti}+3.1 \mathrm{Cr}+ \\ & 1.3 \mathrm{Fe}+0.7(\mathrm{~V}, \mathrm{Nb}, \mathrm{Mg}) \end{aligned}$	0.3479 (2)	$0 \cdot 1227$ (2)	0.0232 (2)	0.58 (2)
$M(4)$	6 Ti	0.3071 (2)	0.7208 (2)	0.1457 (2)	0.38 (2)
$M(5)$	6 Ti	0.4754 (2)	0.0832 (2)	0.6386 (2)	0.38 (2)
$M(6)$	0.2 Mg	0.3692 (26)	0.3692 (26)	0.3692 (26)	2.23 (1.19)
$\mathrm{O}(1)$		0.3084 (7)	0.6261 (7)	0.3820 (7)	0.52 (9)
$\mathrm{O}(2)$		0.1553 (7)	0.2394 (7)	0.9392 (6)	0.52 (9)
$\mathrm{O}(3)$		0.9218 (7)	0.4583 (7)	0.2979 (7)	0.52 (8)
$\mathrm{O}(4)$		0.1424 (7)	0.5175 (7)	0.9902 (7)	0.52 (8)
$\mathrm{O}(5)$		0.3901 (7)	0.4879 (7)	0.1343 (7)	0.37 (8)
O(6)		0.7043 (6)	0.2434 (7)	0.0743 (7)	0.42 (8)
$\mathrm{O}(7)$	$P P=1.056$ (18)	0.2133 (3)	0.2133 (3)	0.2133 (3)	0.45 (14)

Table 2. $M-\mathrm{O}$ bond lengths (\AA)

$M(0)$ cuboctahedron			$M(4)$ octahedron (titanium)	
$M(0)-\mathrm{O}(2) \times 6$	$2.803(7)$	$M(4)-\mathrm{O}(2)$	$1.889(6)$	
$M(0)-\mathrm{O}(6) \times 6$	$2.861(5)$	$M(4)-\mathrm{O}(6)$	$1.949(7)$	
Mean	2.832	$M(4)-\mathrm{O}(3)$	$1.967(6)$	
		$M(4)-\mathrm{O}(5)$	$2.014(6)$	
$M(1)$ octahedron		$M(4)-\mathrm{O}(1)$	$2.020(6)$	
$M(1)-\mathrm{O}(1) \times 6$	$2.136(6)$	$M(4)-\mathrm{O}(6)^{\prime}$	$2.028(6)$	
			1.978	
		$M(5)$ octahedron (titanium)		
$M(2)$ tetrahedron		$M(5)-\mathrm{O}(4)$	$1.885(7)$	
$M(2)-\mathrm{O}(5) \times 3$	$1.969(6)$	$M(5)-\mathrm{O}(1)$	$1.902(6)$	
$M(2)-\mathrm{O}(7)$	$2.019(4)$	$M(5)-\mathrm{O}(3)$	$1.930(6)$	
Mean	1.981	$M(5)-\mathrm{O}(5)$	$1.987(7)$	
		$M(5)-\mathrm{O}(5)^{\prime}$	$2.007(7)$	
$M(3)$ octahedron			$2.114(8)$	
$M(3)-\mathrm{O}(4)$	$1.934(6)$		1.971	
$M(3)-\mathrm{O}(3)$	$1.963(7)$	$M(6)$ octahedron		
$M(3)-\mathrm{O}(2)$	$1.963(6)$	$M(6)-\mathrm{O}(5) \times 3$	$2.003(20)$	
$M(3)-\mathrm{O}(4)^{\prime}$	$1.992(6)$	$M(6)-\mathrm{O}(1)+3$	$2.244(25)$	
$M(3)-\mathrm{O}(7)$	$1.995(3)$	$M e a n$	2.123	
$M(3)-\mathrm{O}(2)^{\prime}$	$2.032(6)$			
Mean	1.980			

The results of the structure refinement confirm that mathiasite is isostructural with other crichtonite-group minerals. The structure has been described in detail in previous publications (Grey, Lloyd \& White, 1976; Gatehouse, Grey \& Kelly, 1979). The cation-ordering scheme proposed, Table 1 , is supported by valence-sum calculations, using the parameters of Brown \& Wu (1976) and by the reasonable thermal parameters. The partial occupancy of the octahedral site $M(6)$ has not been observed in the refinements of other crichtonitegroup minerals. This structural feature is probably related to partial occupancy of the anion site on the trigonal axis, $\mathrm{O}(7)$, by large cations. Refinement of the population parameter for $O(7)$ gave a value significantly greater than $1[1.056(18)]$, corresponding, for example, to $0.15 \mathrm{Na}+0.85 \mathrm{O} . \mathrm{O}(7)$ is the apical oxygen of the $M(2) \mathrm{O}_{4}$ tetrahedron, and we propose that when $\mathrm{O}(7)$ is occupied by a large cation, the cation in $M(2)$ can no longer occupy the tetrahedral site and moves into the adjacent octahedral site $M(6)$. The octahedrally coordinated cations $M(3)$ also bond to $O(7)$, and the occupation of $O(7)$ by a large cation would result in either vacancies in $M(3)$, or in a displacement of the $M(3)$ cations away from $O(7)$ to take up a lower coordination. No evidence of the latter was obtained from the difference Fourier map.

References

Brown. I. D. \& Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phis. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cry'st. A24, 321-324.
Gatehouse, B. M., Grey, I. E., Campbell, I. H. \& Kelly. P. (1978). Am. Mineral. 63, 28-36.

Gatehouse, B. M., Grey, I. E. \& Kelly, P. R. (1979). Am. Mineral. 64, 1010-1017.
Grey, I. E., Lloyd, D. J. \& White, J. S. (1976). Am. Mineral. 61, 1203-1212.
Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination, Univ. of Cambridge, England.
Smyth, J. R., Erlank, A. J. \& Rickard, R. S. (1978). Abstract presented at the AGU Spring Meeting, Miami Beach, Florida.
Stewart, J. M. (1976). The XRAY system-version of 1976. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1983). C39, 422-425

Tetradecapraseodymium Hexanickel Undecasilicide, $\mathbf{P r}_{14} \mathbf{N i}_{6} \mathbf{S i}_{11}$, with Centered Trigonal Rare-Earth Prisms

By E. Hovestreydt, K. Klepp and E. Parthé
Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland

(Received 18 October 1982; accepted 1 December 1982)

```
Abstract. \(\quad M_{r}=2634, \quad\) monoclinic, \(\quad C 2 / m, \quad a=113.72(1)^{\circ}, \quad V=2809.7 \AA^{3}, \quad Z=4, \quad D_{x}=\) \(33.991(3), \quad b=4.2328(4), \quad c=21.330(3) \AA, \quad \beta=6.226 \mathrm{Mg} \mathrm{m}^{-3}, \quad\) Mo \(K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=\) 0108-2701/83/040422-04\$01.50 © 1983 International Union of Crystallography
```

